报告服务热线400-068-7188

预见2024:机器学习产业技术趋势展望(附技术路径、投资方向、专利布局、科技企业布局等)

分享到:
20 张维佳 • 2024-01-08 14:20:33  来源:前瞻产业研究院 E7467G0

行业主要上市公司:百度集团(09888)、腾讯控股(00700)、阿里巴巴(09988)、科大讯飞(002230)等。

本文核心观点:机器学习是实现人工智能的关键技术手段,有监督学习和强化学习为机器学习专利技术布局重点。

引言:机器学习是实现人工智能的关键技术手段,应用领域持续延伸

——机器学习可以从已知信息中寻找规则

机器学习是人工智能的一个重要分支,主要研究如何让自己算计系统通过数据学习并作出决策或预测,而不需要进行明确的编程。简单来说,机器学习就是让计算机利用经验来改善性能。目前,机器学习也是商业应用中最常用的算法。

图表1:机器学习主要流程/步骤

传统的编程是基于规则和数据,目的是快速得到一个答案。一般而言,但改规则制定好后,对于每一次输入的数据,计算机程序输出的答案一般是唯一确定的,这是传统编程的特点。而机器学习模式是从已知的数据和答案中寻找出某种规则,对于机器学习而言,我们输入的是数据及对应的答案,而寻找的是满足这一种答案的数据背后的某种规则。总而言之,机器学习的特点是以计算机为工具和平台,以数据为研究对象,以学习方法为中心,是概率论、线性代数、信息论、最优化理论和计算机科学等多个领域的交叉学科。

图表2:传统编程模式 VS 机器学习

——机器学习是实现人工智能的关键技术手段

机器学习和人工智能之间存在着密切而深入的联系。人工智能是一个广泛的概念,它涉及让计算机系统模仿人类智能的各个方面,包括理解、推理、学习、创造等。而机器学习是实现人工智能的一种关键技术手段。

机器学习在人工智能中的应用非常广泛,它被用于图像识别、语音识别、自然语言处理、推荐系统等众多领域。随着计算能力的提升和数据量的增加,机器学习特别是深度学习的发展,极大地推动了人工智能技术的进步,使其在许多领域取得了突破性的成果。

简而言之,机器学习是人工智能的核心组成部分,是实现人工智能技术的重要途径。通过机器学习,计算机可以从数据中学习并改进其性能,不断接近甚至在某些方面超越人类的智能水平。

图表3:机器学习与人工智能的关系

——机器学习应用领域不断扩展

人工智能对各行业的影响越来越大,机器学习应用的典型领域有计算机视觉、语音识别、自然语言处理、自动驾驶等。随着海量数据的累积和硬件运算能力的提升,机器学习的应用领域还在快速扩展。

图表4:机器学习典型应用领域

技术路线:机器学习技术发展路径与支撑体系

从技术路线发展来看,机器学习总体技术路线包括有监督学习、无监督学习和强化学习等方面的内容。

从技术支撑体系来看,中国机器学习创新单元主要包括智能技术与系统国家重点实验室、深度学习技术及应用国家工程实验室等国家重点实验室;深圳前海人工智能产业投资基金、G60科创走廊人工智能产业基金等产业投资基金;《信息安全技术 机器学习算法安全评估规范》、《人工智能 面向机器学习的数据标注规程》等国家标准计划。

图表5:机器学习技术发展路径与支撑体系

机器学习专利技术布局:有监督学习和强化学习为布局重点

——有监督学习和强化学习为机器学习专利技术布局重点,申请热度和布局广度较高

从机器学习细分专利技术申请的热度来看,有监督学习和强化学习具备较高的专利申请热度,专利申请总量分别为21677项和26134项,申请人数量分别达10881个和8466个;从技术跨度来看,有监督学习和强化学习跨技术专利申请量较多,技术跨度分别达231个和249个IPC小类;从技术市场覆盖广度来看,有监督学习和强化学习均覆盖46个国家和地区,说明这些技术受到全球范围内的关注和研究。

图表6:2023年全球机器学习达技术专利情况对比(单位:项,个)

注:1)搜索关键词:机器学习技术路线相关关键词;2)搜索范围:标题、摘要和权利说明;3)统计截至日期:2023年12月28日。下同。

——中国、美国、日本和韩国为机器学习主要技术来源

从专利地域分布来看,中国在有监督学习、无监督学习和强化学习细分技术领域创新均较为活跃,专利数量全球第一;此外美国、日本、德国等在机器学习相关技术专利布局较多;从申请人来看,万国商业机器公司、发那科株式会社、三星电子株式会社、谷歌责任有限公司等为机器学习相关技术专利主要申请人。

图表7:2023年全球机器学习技术专利地区和前十申请人分布(单位:%)

机器学习科技企业技术布局:各平台均支持多种机器学习范式

目前,中国主要的机器学习平台均为综合性的平台,能够支持多种机器学习范式,包括监督学习、无监督学习和强化学习。

图表8:机器学习科技企业技术及应用领域布局

注:以上排名不分先后,仅汇总行业内部分代表性科技企业。

机器学习技术投资重点赛道:机器学习应用为重点关注领域

从我国机器学习投融资热门赛道来看,截至2023年,机器学习应用融资热度较高,投融资事件数量占比达40%,此外,计算机视觉、跨行业解决方案、数据治理和数据管理等细分领域企业也具备较高的融资热度。

图表9:2022-2023年中国机器学习技术投资赛道分布(单位:%)

机器学习关键技术投资潜力评估

综合来看,医疗保健、零售和消费品业领域中的应用市场吸引力较高,但收到数据隐私和监管等因素的影响,目前技术暂未成熟。短期来看,机器学习在信息技术和互联网、金融、制造等领域应用为投资者重点关注领域,长期来看,交通物流、教育培训、媒体娱乐、政务服务等领域的应用投资潜力较大。

图表10:机器学习技术投资潜力气泡图

机器学习技术发展趋势与目标

——机器学习发展目标主要集中在基础研究、技术创新、应用推广等方面

近年来,我国相继出台了一系列政策文件和规划纲要,支持人工智能及机器学习技术的发展,并推动相关产业运用新技术进行转型和创新,如《“十四五”软件和信息技术服务业发展规划》、《“十四五”国家科技创新规划》、《“十四五”国家信息化规划》、《“十四五”智能制造发展规划》等。整体来看,我国机器学习技术的发展目标主要集中在基础研究、技术创新、应用推广、人才培养和产业培育等方面。

图表11:机器学习技术发展目标

——机器学习技术发展趋势

机器学习作为人工智能领域的关键分支,正随着技术的不断进步而迅速发展。机器学习技术的发展趋势表现为更智能化、更个性化、更高效和更安全。随着这些趋势的不断发展,机器学习技术将为社会带来更多的便利和进步。

图表12:机器学习技术发展趋势

更多本行业研究分析详见前瞻产业研究院《中国人工智能行业发展前景预测与投资战略规划分析报告》。

同时前瞻产业研究院还提供产业大数据产业研究报告产业规划园区规划产业招商产业图谱智慧招商系统行业地位证明IPO咨询/募投可研IPO工作底稿咨询等解决方案。在招股说明书、公司年度报告等任何公开信息披露中引用本篇文章内容,需要获取前 瞻产业研究院的正规授权。

更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动。

前瞻产业研究院 - 深度报告 REPORTS

2024-2029年中国人工智能行业发展前景预测与投资战略规划分析报告
2024-2029年中国人工智能行业发展前景预测与投资战略规划分析报告

本报告前瞻性、适时性地对人工智能行业的发展背景、供需情况、市场规模、竞争格局等行业现状进行分析,并结合多年来人工智能行业发展轨迹及实践经验,对人工智能行业未来...

查看详情

本文来源前瞻产业研究院,内容仅代表作者个人观点,本站只提供参考并不构成任何投资及应用建议。(若存在内容、版权或其它问题,请联系:service@qianzhan.com) 品牌合作与广告投放请联系:0755-33015062 或 hezuo@qianzhan.com

如在招股说明书、公司年度报告等任何公开信息披露中引用本篇文章数据,请联系前瞻产业研究院,联系电话:400-068-7188。

p40 q0 我要投稿

分享:

前瞻经济学人

专注于中国各行业市场分析、未来发展趋势等。扫一扫立即关注。

前瞻产业研究院

中国产业咨询领导者,专业提供产业规划、产业申报、产业升级转型、产业园区规划、可行性报告等领域解决方案,扫一扫关注。

前瞻数据库
企查猫
作者 张维佳
产业研究员、分析师
10999125
关注
841
文章
173
前瞻经济学人App二维码

扫一扫下载APP

与资深行业研究员/经济学家互动交流让您成为更懂趋势的人

研究员周关注榜

企查猫(企业查询宝)App
×

扫一扫
下载《前瞻经济学人》APP提问

 
在线咨询
×
在线咨询

项目热线 0755-33015070

AAPP
前瞻经济学人APP下载二维码

下载前瞻经济学人APP

关注我们
前瞻产业研究院微信号

扫一扫关注我们

我要投稿

×
J